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Magnetic domain patterns under an oscillating field are studied theoretically by using a simple Ising-like
model. We propose two ways to investigate the effects of the oscillating field. The first one leads to a model in
which rapidly oscillating terms are averaged out and the model can explain the existence of the maximum
amplitude of the field for the appearance of patterns. The second one leads to a model that includes the delay
of the response to the field and the model suggests the existence of a traveling pattern which moves very slowly
compared with the time scale of the driving field.
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I. INTRODUCTION

Rapidly driven systems have received considerable atten-
tion these days. Under a rapidly oscillating field, a state
which is unstable in the absence of the oscillating field can
be stabilized. One of the most simple and well-known ex-
amples is Kapitza’s inverted pendulum and Landau and Lif-
shitz generalized the problem �1�. Their method has recently
been applied to classical and quantum dynamics in periodi-
cally driven systems �2,3�. The method is also applied to
stabilization of a matter-wave soliton in two-dimensional
Bose-Einstein condensates without an external trap �4–6�.

Magnetic domain patterns in a uniaxial ferromagnetic thin
film, which usually show a labyrinth structure, exhibit vari-
ous kinds of structures under an oscillating field. For ex-
ample, the labyrinth structure changes into a parallel-stripe
structure for a certain field �7,8�. In some other cases, several
types of lattice structures can appear �9�.

In this paper, we develop effective theories for slow mo-
tion of magnetic domain patterns under a rapidly oscillating
field. Especially, we focus on traveling patterns as an ex-
ample of slowly moving patterns. So far, there were few
effective theories to describe such a slowly traveling pattern
under a rapidly oscillating field. In experiments on a garnet
thin film, we can observe a parallel-stripe pattern traveling
very slowly compared with the time scale of the field in
some cases �10�. A traveling mazelike pattern like Fig. 1 is
also found in our numerical simulations.

Although traveling patterns appear in various kinds of
systems, most works about them have been limited to the
systems in the absence of an oscillating field �11–18�. The
mechanism of such traveling patterns in one-dimensional
�1D� systems was intensively studied in the 1980s as drift
instabilities or parity-breaking instabilities �11–14�. In Ref.
�11�, secondary instabilities were discussed for several simi-
lar equations. By contrast, the authors of Refs. �12–14� gave
no particular equation at first, but they considered symme-
tries of the system and assumed the form of the solution
before deriving their equations. Almost 10 years after those
papers, Price studied traveling patterns in 2D scalar nonlin-

ear neural fields where the nonlinearity is purely cubic and
discussed constraints on the neural field structure and param-
eters to support traveling patterns �15�. He suggested that
Swift-Hohenberg–type models will not support traveling pat-
terns. However, moving patterns were actually observed in
numerical simulations for a general complex Swift-
Hohenberg equation in Ref. �16�. Our model has similar
properties to those of the �real� Swift-Hohenberg equation.
We will not use the method of Ref. �15� but that of Ref. �11�
to explore the existence of a traveling pattern in a ferromag-
netic thin film.

In fact, recently, domain walls under a rapidly oscillating
field have been studied �19,20�. Michaelis et al. discussed
the effects of rapid periodic oscillation of parameters in a
Ginzburg-Landau �GL� equation by applying a multiscale
technique and derived the averaged GL equation �19�; Kira-
kosyan et al. derived the averaged Landau-Lifshitz equation
by employing the multi-time-scale expansion technique �20�.
In those papers, they took into account higher harmonic os-
cillations. Although their methods cannot be directly applied
to our model, our methods correspond to the lowest orders of
their multi-time-scale expansions.

Our model is a simple 2D Ising-like model �see Refs.
�21–24�, and references therein�, which has been used to
simulate magnetic domain patterns. The numerical results
simulated by the model show very similar properties to ex-
perimental ones �21–24�. We consider a scalar field ��r�,
where r= �x ,y�. The positive and negative values of ��r�
correspond to the up and down spins, respectively. The
Hamiltonian consists of four energy terms: Uniaxial-
anisotropy energy Hani, exchange interactions HJ, dipolar in-
teractions Hdi, and interactions with the external field Hex.
The anisotropy energy is given by
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FIG. 1. �Color online� Snapshots of a traveling pattern under an
oscillating field after �a� 5000 cycles, �b� 10000 cycles, and �c�
15000 cycles. The whole pattern is traveling to the left. The details
are described in the Appendix.
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Hani = �� dr�−
��r�2

2
+

��r�4

4
� . �1�

It implies that the anisotropy energy prefers the values
��r�= ±1. The exchange and dipolar interactions are de-
scribed by

HJ = �� dr
����r��2

2
�2�

and

Hdi = �� dr dr���r���r��G�r,r�� , �3�

respectively. Here, G�r ,r��	�r−r��−3 at long distances. The
exchange interactions imply that ��r� tends to have the same
value as neighbors. On the other hand, the dipolar interac-
tions imply that ��r� tends to have the opposite sign to the
values in a region at a long distance. Namely, HJ and Hdi
may be interpreted as short-range attractive and long-range
repulsive interactions, respectively. Their competition leads
to a domain structure with a characteristic length. The term
from the interactions with the external field is given by

Hex = − h�t�� dr ��r� . �4�

Here, we consider a spatially homogeneous and rapidly os-
cillating field:

h�t� = h0 sin �t . �5�

From Eqs. �1�–�4�, the dynamical equation of the model is
described by

���r�
�t

= − L0
��Hani + HJ + Hdi + Hex�

���r�
= L0
����r� − ��r�3�

+ ��2��r� − �� dr���r��G�r,r�� + h�t�� . �6�

Hereafter, we fix L0=1 and give the parameters �, �, �, and
h0 as positive values.

In this paper, we propose two approximation methods to
obtain the dynamical equation for slow motion. In both
methods, we apply a part of Kapitza’s idea that the dynamics
under a rapidly oscillating field can be separated into a rap-
idly oscillating part and a slowly varying part �1�. In Sec. II,
we derive the model whose rapidly oscillating part is aver-
aged out on the basis of the Kapitza’s idea about the time
average of the fast motion. In Sec. III, we derive another
model for the slow motion, considering the delay of the re-
sponse to the field instead of taking a time average. After the
derivation of the models, the instabilities of traveling pat-
terns are investigated in both Secs. II and III. We discuss the
details about the existence of a traveling pattern in Sec. IV.
Conclusions are given in Sec. V.

II. TIME-AVERAGED MODEL

First of all, we assume that the variable ��r� can be sepa-
rated into two parts:

��r,t� = ��r,t� + �0�t� . �7�

Here, ��r , t� is a slowly varying term and �0�t� is a rapidly
oscillating space-independent term. Substituting Eq. �7� into
Eq. �6�, we obtain

���r�
�t

+ �̇0 = �����r� + �0� − ���r� + �0�3 + ��2���r�

+ �0� − �� dr����r�� + �0�G�r,r�� + h�t� .

�8�

Let us consider only the rapidly oscillating space-
independent part; then we have

�̇0 = ���0 − �0
3� − ��0� dr�G�r�,0� + h�t� . �9�

Here, we define G�r ,0��1/ �r�3. Then, the integral in Eq. �9�
is a constant, a0:

a0 = 2��
d

	 dr

r2 . �10�

Here, d is the cutoff length to prevent the divergence for d
→0. It is also interpreted as the lower limit of the dipolar
interactions. The solution of Eq. �9� should have the follow-
ing form:

�0 = 
0 sin��t + �� , �11�

where � is a phase shift which comes from the delay of the
response to the field. Substituting Eq. �11� into Eq. �9� and
omitting high-order harmonics �i.e., sin 3�t�, we have

�
0 cos��t + �� = �0
0 sin��t + �� −
3

4
�
0

3 sin��t + ��

+ h0 sin �t , �12�

where �0=�−�a0. From Eq. �12�, a pair of simultaneous
equations is obtained:

− �
0 sin � = ��0 −
3

4
�
0

2�
0 cos � + h0, �13a�

�
0 cos � = ��0 −
3

4
�
0

2�
0 sin � . �13b�

Eliminating � from Eqs. �13a� and �13b�, we obtain a cubic
equation of X�
0

2:

9

16
�2X3 −

3

2
��0X2 + ��2 + �0

2�X = h0
2. �14�

Therefore, 
0 can be evaluated from Eq. �14� if the param-
eters �, �0, �, and h0 are given.

Now, let us think about the slowly varying part. After
substituting Eq. �11� into Eq. �8�, we average out the rapid
oscillation, closely following Kapitza’s idea. Then, we obtain
an equation for slowly varying domain patterns:
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���r�
�t

= ����r� − ��r�3� −
3

2
�
0

2��r� + ��2��r�

− �� dr���r��G�r,r�� . �15�

The second term on the right-hand side of Eq. �15� is an
extra term due to the time average. This term is essential to
explore the effects of the rapidly oscillating field.

On the basis of Eq. �15�, we will analyze the possibility of
patterns traveling at a low velocity. Let us first choose the
most simple moving stripe-type solution for Eq. �15�:

��r,t� = A0�t� + A1�t�sin�kx + b�t�� . �16�

Substituting Eq. �16� into Eq. �15� and omitting high-order
harmonics, we have

Ȧ0 + Ȧ1 sin�kx + b� + ḃA1 cos�kx + b� = �0�A0 + �1�A1 sin�kx

+ b� − ��A0
3 + 3A0

2A1 sin�kx + b� +
3

2
A0A1

2 +
3

4
A1

3 sin�kx

+ b�� . �17�

Here,

�0� = �1 −
3

2

0

2�� − �a0, �18a�

�1� = �1 −
3

2

0

2�� − �k2 − ��a0 − a1k� , �18b�

with a0 given by Eq. �10�, a1=2�, and k= �k�. Equation �17�
leads to the following equations:

Ȧ0 = �0�A0 − ��A0
3 +

3

2
A0A1

2� , �19a�

Ȧ1 = �1�A1 − ��3A0
2A1 +

3

4
A1

3� , �19b�

ḃ = 0. �19c�

Equation �19c� implies that the phase b�t� in Eq. �16� shows
no time dependence and that there is no traveling pattern
with the simplest form like Eq. �16�.

Next, let us consider a more generalized solution by in-
corporating the second harmonics:

��r,t� = A0�t� + A1�t�sin�kx + b�t�� + A21 cos�2�kx + b�t��

+ A22 sin�2�kx + b�t�� . �20�

Substituting Eq. �20� into Eq. �15� leads to the following
equations:

Ȧ0 = �0�A0 − ��A0
3 +

3

2
A0A1

2 +
3

2
A0A21

2 +
3

2
A0A22

2 −
3

4
A1

2A21� ,

�21a�

Ȧ1 = �1�A1 − ��3

4
A1

3 + 3A0
2A1 +

3

2
A1A21

2 +
3

2
A1A22

2

− 3A0A1A21� , �21b�

Ȧ21 = �2�A21 − ��3

4
A21

3 −
3

2
A0A1

2 + 3A0
2A21 +

3

2
A1

2A21

+
3

4
A21A22

2 − 6A0A22
2 � , �21c�

Ȧ22 = �2�A22 − ��3

4
A22

3 + 3A0
2A22 +

3

4
A21

2 A22 +
3

2
A1

2A22

+ 6A0A21A22� , �21d�

and

ḃ = − 3�A0A22. �22�

Here, �0� and �1� are given by Eq. �18a� and �18b�, and

�2� = �1 −
3

2

0

2�� − 4�k2 − ��a0 − 2a1k� . �23�

This time, Eq. �22� implies that there can be a traveling pat-
tern if A0�0 and A22�0.

Now let us find a stationary point �SP� of Eq. �21a�–�21d�
where A0=0 or A22=0, and examine its linear stability. If the
SP is unstable and both A0 and A22 grow from zero, the
pattern can start to travel. For the parameter values used to
obtain Fig. 1, however, there are no SPs except for ones with
A0=A21=A22=0. We should note A1=0 or A1

2=4�1� /3� at the
SPs with A0=A21=A22=0. Since A1 must be real, �1��0.
Namely,


0
2 

2

3�
�� − �k2 − ��a0 − a1k�� . �24�

This condition gives an estimate of the maximum value of
the field amplitude h0 to observe a nonuniform pattern, as h0
proves to be a monotonic function of 
0 for the parameter
values in Fig. 1. In other words, if Eq. �24� is not satisfied,
the only SP is �A0 ,A1 ,A21,A22�= �0,0 ,0 ,0�, which means
that no pattern appears. At the SPs with A0=A21=A22=0 and
A1

2=4�1� /3�, the Jacobian of Eq. �21a�–�21d� becomes

J =�
�0� − 2�1� 0 �1� 0

0 − 2�1� 0 0

2�1� 0 �2� − 2�1� 0

0 0 0 �2� − 2�1�
� . �25�

The real parts of eigenvalues of Eq. �25� are �1=−2�1�, �2

=�3= 1
2 ��0�−4�1�+�2��, and �4=�2�−2�1�. Note that �1 is al-

ways negative. The others ��2, �3, �4� also prove to be
negative when k�1. In fact, the most preferable wave num-
ber of domain patterns is k=1 for the parameter values in
Fig. 1 �see Ref. �24� for details�. Therefore, the present SPs
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are stable and we cannot expect a traveling pattern in this
case.

III. PHASE-SHIFTED MODEL

In this section, we consider another equation for slowly
varying domain patterns instead of Eq. �15�. We begin with
Eqs. �7�–�12�, �13a�, �13b�, and �14� again, but we will not
take a time average. Instead, we take the delay of the re-
sponse to the field into consideration. Substituting Eq. �11�
into Eq. �8�, we consider the equation as a discrete-time
equation which is valid at t= �2� /��n with integers n. Then,
we regard the discrete time as continuous. This procedure is
justified when the field oscillation is rapid enough compared
with the time scale of the slowly varying part. It is as if we
take a sequence of snapshots at t= �2� /��n and take it as a
movie. In fact, our numerical results in Fig. 1 are obtained by
taking these kinds of snapshots. We thus obtain a new equa-
tion for slowly varying domain patterns:

���r�
�t

= ��1 − 3
0
2 sin2 ����r� + ��2��r�

− �� dr���r��G�r,r�� − ���r�2���r� + 3
0 sin ��

+ C , �26�

where

C = �0
0 sin � − �
0
3 sin3 � − �
0 cos � , �27�

with 
0 and � evaluated from Eq. �13a� and �13b�. Equation
�26� has two extra terms due to the phase shift � except for
the constant C. One is linear and the other is nonlinear in �.
The extra nonlinear term has an important role in the discus-
sion of the existence of a traveling pattern.

Now, let us consider the stability of a traveling pattern on
the basis of Eq. �26�. When the simplest form, Eq. �16�, is
substituted into Eq. �26�, we obtain the same result as Eq.
�19c�. Therefore, we proceed to choose the extended solu-
tion, Eq. �20�. Substituting Eq. �20� into Eq. �26� leads to the
following equations:

Ȧ0 = �̃0A0 + C − ��A0
2�A0 + 3
0 sin �� +

3

2
�A0 + 
0 sin ���A1

2

+ A21
2 + A22

2 � −
3

4
A1

2A21� , �28a�

Ȧ1 = �̃1A1 − ��3

4
A1

3 +
3

2
A1�A21

2 + A22
2 � + 3A0A1�A0

+ 2
0 sin �� − 3A1A21�A0 + 
0 sin ��� , �28b�

Ȧ21 = �̃2A21 − ��3

4
A21

3 +
3

4
A21�2A1

2 + A22
2 � + 3A0A21�A0

+ 2
0 sin �� −
3

2
�A1

2 + 4A22
2 ��A0 + 
0 sin ��� , �28c�

Ȧ22 = �̃2A22 − ��3

4
A22

3 +
3

4
A22�2A1

2 + A21
2 � + 3A0A22�A0

+ 2
0 sin �� + 6A21A22�A0 + 
0 sin ��� , �28d�

and

ḃ = − 3��A0 + 
0 sin ��A22. �28e�

Here,

�̃0 = �1 − 3
0
2 sin2 ��� − �a0, �29a�

�̃1 = �1 − 3
0
2 sin2 ��� − �k2 − ��a0 − a1k� , �29b�

�̃2 = �1 − 3
0
2 sin2 ��� − 4�k2 − ��a0 − 2a1k� . �29c�

Equation �28e� suggests that there can be a traveling pattern
if both A0+
0 sin ��0 and A22�0 are satisfied.

Now let us think about the SPs of Eq. �28a�–�28e� where
A0+
0 sin �=0 or A22=0. For the cases with k�1 and the
parameter set used in Fig. 1, we find that there are no SPs
with A0+
0 sin �=0. Therefore, we concentrate on SPs with
A22=0, where Eqs. �28a�–�28e� lead to the following equa-
tions:

0 = �̃0A0 + C − ��A0
2�A0 + 3
0 sin �� +

3

2
�A0 + 
0 sin ���A1

2

+ A21
2 � −

3

4
A1

2A21� , �30a�

0 = �̃1A1 − ��3

4
A1

3 +
3

2
A1A21

2 + 3A0A1�A0 + 2
0 sin ��

− 3A1A21�A0 + 
0 sin ��� , �30b�

0 = �̃2A21 − ��3

4
A21

3 +
3

2
A1

2A21 + 3A0A21�A0 + 2
0 sin ��

−
3

2
A1

2�A0 + 
0 sin ��� . �30c�

Here, we note that A1 should not be zero. When A1�0, Eq.
�30b� leads to

A1
2 =

4�̃1

3�
− 2�A21

2 + 2A0�A0 + 2
0 sin �� − 2A21�A0

+ 
0 sin ��� . �31�

Substituting Eq. �31� into Eqs. �30a� and �30c�, we obtain a
pair of nonlinear simultaneous equations for A0 and A21,
which can be solved numerically.

At those SPs, the Jacobian of Eqs. �28a�–�28e� is
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J =�
J11 J12 J13 0

2J12 J22 J23 0

2J13 J23 J33 0

0 0 0 J44

� , �32�

with the elements given by

J11 = �̃0 − ��3A0
2 + 6A0
0 sin � +

3

2
�A1

2 + A21
2 �� , �33a�

J12 = − 3�A1�A0 + 
0 sin � −
1

2
A21� , �33b�

J13 = − 3���A0 + 
0 sin ��A21 −
1

4
A1

2� , �33c�

J22 = �̃1 − ��9

4
A1

2 +
3

2
A21

2 + 3A0�A0 + 2
0 sin �� − 3A21�A0

+ 
0 sin ��� , �33d�

J23 = 3�A1�A0 + 
0 sin � − A21� , �33e�

J33 = �̃2 − ��9

4
A21

2 +
3

2
A1

2 + 3A0�A0 + 2
0 sin ��� ,

�33f�

J44 = �̃2 − ��3

4
�2A1

2 + A21
2 � + 3A0�A0 + 2
0 sin �� + 6A21�A0

+ 
0 sin ��� . �33g�

Equation �32� is a block-diagonal matrix. We can evaluate
the real parts of the eigenvalues, �1, �2, �3, for the upper-
left 3�3 matrix as well as �4=J44. The dependence of the
real parts of the eigenvalues on the field amplitude h0 is
shown in Fig. 2. Here, we take the values of the parameters,
�, �, and �, used in Fig. 1. For k=1.0, all the real parts of the
eigenvalues ��1 , . . . ,�4� are always negative. In other
words, the SPs are stable and a traveling pattern cannot ap-
pear. For k=0.83, however, extra SPs appear in the region
between h0�0.35 and h0�1.5. In that region, �4 and one of
the other three ��1 ,�2 ,�3� are positive. Incidentally, it is
confirmed that A0+
0 sin ��0 in the region. This result sug-
gests that a traveling pattern can appear in a certain region of
the field when k=0.83.

Using the above analysis, we show a stability diagram in
Fig. 3. In the unstable area, where there is a branch with
positive �4, a traveling pattern can appear. In the stable area,
where all the branches of �4 have negative values, it cannot
appear. The values of the parameters �, �, and � are the
same as ones in Fig. 1. The characteristic wave number k0
depends on the ratio of � and � �see Ref. �24� for details�,
and k0=1 in our case. Though it is expected that k�k0, the
actual characteristic length in the simulations is larger than

2� /k0. In other words, kk0 in the actual numerical results,
although a domain pattern with a small k is not always real-
istic. Incidentally, the field larger than h0�1.5 may be mean-
ingless since domain patterns should vanish under a strong
field.

IV. DISCUSSION

The results in Fig. 2 suggest that a traveling pattern can
exist for k�0.83 but not for k=1.0. This can be interpreted
as meaning that a traveling pattern should be a little fat. In
fact, the actual wave numbers of domain patterns in our nu-
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FIG. 2. The dependence of the real parts of the eigenvalues of
Eq. �32� on the field amplitude h0: �a� k=1.0 and �b� k=0.83.
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FIG. 3. �Color online� Stability diagram in k-h0 space. In the
unstable area �red-circle points�, a traveling pattern can appear. In
the stable area �green-cross points�, the pattern cannot travel.
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merical simulations are a little less than k=1, although k
=0.83 seems too small. We can say that this fact partly sup-
ports the theoretical results given here.

We have used very simple approximations, i.e., perfect
parallel-stripe structures without any distortion, to investi-
gate the instabilities of a traveling pattern. That may be one
of the reasons why the present analysis has suggested a trav-
eling pattern with k smaller than that of the numerical results.
In our simulations, the traveling patterns do not have a per-
fect parallel-stripe structure. If more complex and better ap-
proximations are employed, the actual traveling patterns ex-
hibited by numerical simulations may be better explained.

In experiments, the perfect parallel-stripe structure is a
realistic pattern. However, as mentioned above, the condition
for a traveling pattern is tight even for such a simple struc-
ture. Traveling patterns with a more complex structure can
be observed in experiments and the conditions of their ap-
pearance would be more complex than the present case. In
any case, it is sure that a traveling pattern cannot appear
without a rapid oscillating field.

V. CONCLUSIONS

We have proposed two ways to describe magnetic domain
patterns moving slowly under a rapidly oscillating field. One
gives a model in which rapidly oscillating terms are averaged
out. The time-averaged model can explain the existence of
the maximum values of the field where nonuniform domain
patterns are preferable. The other gives a model which in-
cludes a phase shift as the delay of the response to the field.
The phase-shifted model suggests the existence of a traveling
pattern which moves very slowly compared with the time
scale of the field. These two models have both merits and
demerits. In other words, the approximations to be employed
depend on the phenomenon under consideration. We should
choose a method suitable for the analysis of the phenomenon
to be investigated.

Although we have focused on a traveling pattern in this
paper, these two methods are promising for applying to many
other domain patterns under a rapidly oscillating field.
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APPENDIX: NUMERICAL SIMULATIONS

The numerical procedures for time evolution are almost
the same as those of Refs. �23,24�. For time evolution, we
use a semi-implicit method: The exact solutions and the sec-
ond order Runge-Kutta method are used for the linear and
nonlinear terms, respectively. For a better spatial resolution,
a pseudospectral method is applied. In other words, we nu-
merically calculate the time evolutions of Eq. �6� in Fourier
space:

��k

�t
= ��� − �3�k − ��k2 + �Gk��k + h�t��k, �A1�

where �·�k denotes the convolution sum and Gk is the Fourier
transform of G�r ,0�. Since we defined G�r ,0��1/ �r�3,

Gk = a0 − a1k , �A2�

where k= �k� and

a0 = 2��
d

	 dr

r2 , a1 = 2� . �A3�

In the simulations, we set d=� /2, which results in a0=4.
In Fig. 1, the parameters are given as �=2.0, �=2.0, and

�=2� /a1=2/�. The frequency and amplitude of the field are
�=2��5�10−2 and h0=0.8, respectively. The simulations
are performed on a 128�128 lattice with periodic boundary
conditions. The snapshots in Fig. 1 are the domain patterns at
�a� 5�103T, �b� 10�103T, and �c� 15�103T, where T
=2� /�. If the amplitude is larger �for example, h0=0.9,
0.95, etc.�, we can see a traveling pattern with a different
structure moves to a different direction.
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